

1 Introduction

Figure 1 shows a fragment of an assembly process plan for

an infra-red focal plane array (IR-FPA) dewar assembly
(cryogenic thermos bottle). There are several interesting
things about this plan:

• Assembly steps such as 1, 2, and 3 can stochastically
introduce faults into the device.

• Tests steps such as 4 and 6 can detect certain faults,
but the tests are not perfect: they may fail to detect
existing faults or report the presence of non-existing
faults.

• Repair steps, such as 5 and 7, may stochastically
repair existing faults and/or introduce new faults.

• The plan has conditional branches and loops.

This paper describes:

1. A formal representation for such plans; it allows prob-
abilistic, information-gathering actions, parallel exe-
cution, contingent execution, and loops. (Most
existing plan representations could not express loops.)

2. An aggregation technique for evaluating such plans.
This technique uses Markov modelling to recursively
evaluate and simplify small fragments of the schemat-
ically represented plan. We are thus able to avoid con-
structing a Markov model for the entire plan.

2 Representing Plans with Loops

We represent steps in an assembly process plan with a
probabilistic, propositional action representation equivalent
to that of C-BURIDAN [Draper94]. Each

step

 has a set of

outcome distributions

 that depend mutually exclusively and
exhaustively on the state of the world when the action is
executed. Each outcome distribution is a probability
distribution over outcomes, where each outcome consists
of:

• STRIPS-like lists of domain propositions that are
added and deleted by the outcome;

• similar lists of

observable

 propositions that are added
and deleted by the outcome; and

• the cost associated with that outcome.

As an example, Figure 2 shows the representation of test
step 6 and repair step 7:

The observable propositions represent statements not about
the domain itself, but rather about which of the discernible
classes of outcomes occurred when the action was executed
(see [Draper94] for a discussion). A plan’s control flow can
only be contingent upon the value of observable
propositions.

Previous plan representations consisting of simple or even
partially ordered sequences of actions are insufficient for
expressing plans with loops. Our representation is more
complex; we will first give a rough overview, then a more
precise characterization. Informally, a plan is a labeled
graph (as in Figure 1), with nodes representing plan steps,
and arcs representing control flow through the plan. Each of
the steps in a plan can be partially or fully

enabled

. At each
time increment, any fully enabled step may be executed,
after which it will be disabled. Generally, execution of a

Figure 1:

Assembly plan fragment for
IR-FPA dewar assembly.

Install
getters

Mount
coldplate

Wirebond
coldplate

Alignment
inspection

Remove
coldplate

Wirebond
inspection

Repair
Wirebond

1 2 3

45

67

Alignment fault
observed

Wirebond fault
observed

Representation and Evaluation of Plans with Loops

Mike Williamson

Department of Computer Science & Engineering
University of Washington

Seattle, Washington
mikew@cs.washington.edu

David E. Smith

Rockwell International
444 High St.

Palo Alto, California 94301
de2smith@rpal.rockwell.com

step will enable one or more following plan steps, perhaps
conditionally on the observed outcome of the present or
other earlier steps. A plan step may enable more than one
following step, allowing execution to

fork

. Multiple threads
of execution are

joined

 through the use of partial
enablement. A step may be partially enabled by each of two
(or more) predecessors, and only when both of the
predecessors have enabled the step will it be fully enabled.

Formally, a plan is a collection of

plan elements

, each a
three-tuple

<σ, π, Ψ>

, where:

•

σ

 is a plan step;

•

π

, the

enablement condition

, is a non-empty set of
unique enablement symbols; and

•

Ψ

, a

conditional enablement descriptor

, is a set of
pairs

<κ

i

, ε

i

>

 where

κ

i

is a formula of observable
propositions, and

ε

i

is a (possibly empty) set of
enablement symbols. (When there is only a single pair
and

κ

 =

true

 we abbreviate with just the enablement
descriptor

ε

.)

Associated with each plan is an

initial enablement

 (a set of
enablement symbols). During execution, the

current
enablement

,

χ

, (also a set of enablement symbols) is
maintained. When an element’s enablement condition is a
subset of the current enablement (i.e.

π

 ⊆

 χ

), that element
may be executed:

1. the elements of

π

 are removed from

χ

;

2. the associated step,

σ

, is executed;

3. each of the

κ

i

 is evaluated in the context of the current
state of the observable propositions. If the conditions
hold, the elements of the associated

ε

i

 are added to

χ

.

Execution terminates when no elements are fully enabled.
Using this notation, the plan fragment in Figure 1 could be
represented as:

<Install getters, e1, e2>
<Mount coldplate, e2, e3>
<Wirebond coldplate, e3, e4>
<Alignment inspection, e4,

{<Alignment fault observed, e5>
 <¬Alignment fault observed, e6>}

<Remove coldplate, e5,e2>
<Wirebond inspection, e6,

{<Wirebond fault observed, e7>,
 <¬Wirebond fault observed, e8>}

<Repair wirebond, e7, e6>

3 Plan Evaluation

For the plan fragment in Figure 1, each step has associated
labor and materials costs. The entire plan can therefore be
evaluated with respect to two attributes: its

expected cost

,
and its

yield

, that is, the probability that the final product
has no faults. [Kushmerick94] describes several techniques
for evaluating probabilistic plans without loops, but these
techniques do not easily extend to plans containing loops.

For plans with loops, one approach is to construct a Markov
chain representing execution of the plan. Our plans give
rise to finite Markov chains with transient nodes
representing various states that arise during the execution
of the plan, and absorbing nodes representing the various
outcomes of the plan. Transitions from a state represent the
various outcomes of executing one of the enabled actions in
that state, and have an associated probability and cost.
These Markov chains can be constructed automatically
from the plan and step representations given above. A
standard analysis technique for Markov chains (e.g.
[Winston94]) will determine a probability distribution over
the absorbing states and the expected number of times that
each transient state is visited. This is precisely the
information that we need to determine the plan’s yield (i.e.
the sum of the probabilities of absorbing states in which the
goal is achieved) and it’s expected cost (i.e. the sum of the
expected number of times that each transition is taken times
the cost of that transition).

In practice, however, this approach is infeasible, due to the
extremely large size of the resulting Markov chain. States
in the Markov chain must encode all feasible combinations
of domain propositions, observable propositions, and
current enablements. For a realistic model of IR-FPA
assembly the plan has 107 elements, 57 domain
propositions, and 23 observable propositions. This gives
rise to a Markov chain with 24697 states, which takes about
58 minutes to construct and analyze. While this could be
used for detailed analysis of a finished plan, it is far too

Figure 2:

Representation of steps 6 and 7.

.8
.2

Wirebond
.1

.9

fault

¬Wirebond
fault

.6

.4

.95

.05

Wirebond
fault observed

¬Wirebond
fault observed

Test step 6

Repair step 7

Wirebond
Fault

¬Wirebond
Fault

¬Wirebond
Fault

Wirebond
Fault

slow for use in a planning or optimization algorithm where
hundreds or even thousands of candidate plans must be
considered.

4 Plan Space Aggregation

The basic problem with the Markov chain approach is that
if there are

n

 possible faults at a given point in the plan,
there are possible states in the Markov chain.
However, a typical assembly action in the plan is unaffected
by most of the possible faults. The Markov chain does not
take advantage of this independence. We are therefore
developing an alternative approach to plan evaluation that
exploits this independence using the much more compact
plan representation. The basic idea is to recursively:

1. Choose a small fragment of the plan.

2. Build and solve Markov chains for that fragment,
ignoring all properties (faults) that steps in the frag-
ment do not depend on or influence.

3. With the results of 2, build an aggregate contingent
plan step representing the fragment.

4. Replace the fragment with the aggregate step.

For the example in Figure 1, steps 2, 3, 4, and 5 can be
aggregated into the single step shown in Figure 3a, and

steps 6 and 7 can be aggregated into the single step shown
in Figure 3b.

Having done this, the entire plan fragment in Figure 1 can
be aggregated into a single step with essentially the same
structure (different numbers) as that in Figure 3a. The
advantage of this approach is that the aggregation of {2, 3,
4, 5} and {6, 7} were done only once, without having to
consider all possible combinations of earlier independent
faults. In particular, the aggregation of {6, 7} did not have
to consider alignment faults. In contrast, solution of the
Markov chain (or Monte Carlo simulation for that matter)
would solve these problems once for every possible
combination of independent faults that might be present.

Fragment selection.

 One subtlety in the aggregation
process has to do with fragment selection. A fragment is a
subset of the elements in the plan, but not just any subset
will work. To allow aggregation, a set of steps must have a
single outside entry point. More precisely, if the plan is
represented as a graph, all enablement arcs coming into the
fragment’s subgraph must come in to a single step.
Otherwise it is not possible to produce a single aggregate
step representing the behavior of the fragment. In the plan
of Figure 1, the step sets {2, 3}, {2, 3, 4} and {2, 3, 4, 5}
are all legal fragments because all outside enablements
come in to step 2. Conversely {1, 2} would not be a legal
fragment because both steps 1 and 2 have outside
enablements.

The choice of fragment also has a significant impact on the
efficiency of the entire process. Collapsing linear sequences
of steps does some good, but the biggest payoff appears to
come from aggregating loops into single steps. Thus the
best approach appears to be to start from the inside and
collapse small loops, working outward to surrounding
loops. We are investigating a number of heuristic strategies
for fragment selection.

Aggregation.

A second subtlety in the aggregation process
is that building an aggregated step may involve the solution
of more than one Markov chain. The steps in a plan
fragment can be conditional (like steps 6 and 7), so a
different Markov chain must be built and solved for each
possible combination of those contingencies that occur on
entry to the fragment. In our example, steps 6 and 7 both
depend on whether or not there is a wirebond fault.
Furthermore, a wirebond fault can occur at step 4, prior to
entry into the fragment. As a result, two Markov chains
must be solved, one for the case where a wirebond fault is
present on entry to the fragment, and the other where there
is no wirebond fault on entry to the fragment. The solution
of these two Markov chains map into the two branches in
the aggregate model shown in Figure 3b.

Figure 3:

Aggregate steps for the step sets{2, 3, 4, 5} and
{6, 7}.

O 2n()

.544

.456

Wirebond
.002

.998

fault

¬Wirebond
fault

¬Wirebond
Fault

Wirebond
Fault

Aggregate step {6, 7}

.002

.902
¬ Wirebond fault
¬ Alignment fault

Aggregate step {2, 3, 4, 5}

Wirebond fault
¬ Alignment fault

¬ Wirebond fault
Alignment fault

Wirebond fault
Alignment fault

.021

.075

In general, the relevant conditions for a fragment can be
determined by taking the union of the conditions of all
steps in the fragment. For the fragment {6, 7} the relevant
condition is “wirebond fault”. Deciding whether or not
these conditions can vary on entry to the fragment is more
difficult – it requires a search backwards through the plan
graph to see if any preceding steps can affect those
conditions.

1

Preliminary Results.

 Our preliminary experiments with
aggregation have been limited to combining consecutive
non-branching plan steps. For the realistic IR-FPA
assembly plan this reduces the number of plan steps from
107 to 82 in 3.7 seconds. This reduces the size of the
complete Markov model from 24,697 steps down to
17,825, and cuts the model building and solution time in
half. We expect that aggregation of loops will provide much
more significant savings.

In addition to analytical solution of Markov chains we have
also considered using Monte Carlo simulation to evaluate
plans directly in the plan representation. Although this is
faster than analytical solution, it still appears to be too slow
for use in planning or optimization. However, we could use
Monte Carlo simulation (instead of Markov chain solution)
to evaluate and simplify fragments in our aggregation
technique. We have not yet investigated this alternative.

5 Conclusions

Analytical solution of Markov chains provides a sound
basis for evaluating plans involving probabilistic,
information-gathering actions, parallel execution,
contingent execution, and loops. Unfortunately, the state
space for the Markov model is huge for realistic assembly
process plans. The problem is that Markov chains do not
take advantage of the fact that most assembly steps are
independent of most of the possible faults that can occur in
previous steps. The Markov chain replicates state
transitions over and over for many combinations of
irrelevant faults.

To fix this problem we have introduced a plan space
aggregation technique that isolates small, related fragments
of the plan, and uses Markov chains to reduce these
fragments to individual plan steps. We conjecture that this
approach will allow exponential reduction in the solution
time for assembly process plans, where the impact of faults
is localized.

1

Actually it is more difficult than this. A fault might be introduced by a
step and later corrected through a perfect inspection and repair procedure.
Thus, it is easy to determine an upper bound on the set of relevant, varying
entry propositions, but finding the exact set is hard.

 Acknowledgments

Thanks to Denise Draper, Ken Fertig, Moises Goldszmidt,
Mark Peot and Tom Dean for comments on the paper and
discussion of Markov techniques and planning. This
research was funded by Rockwell and by ARPA contract
F33615-94-C-4426.

 References

[Boutilier94] Boutilier, C., and Dearden, R., Using
Abstractions for Decision-Theoretic Planning with
Time Constraints, in

Proceedings of the Twelfth
National Conference on Artificial Intelligence

, pages
1016-1022, 1994.

[Draper94] Draper, D., Hanks, S., and Weld, D., Probabilis-
tic Planning with Information Gathering and Contin-
gent Execution, in

Proceedings of the Second
International Conference on Artificial Intelligence
Planning Systems

, AAAI Press, 1994.
[Kushmerick94] Kushmerick, N., Hanks, S., and Weld, D.,

An Algorithm for Probabilistic Planning,

Artificial
Intelligence

, to appear.
[Winston94] Winston, W.,

Operations research: Applica-
tions and Algorithms

, Third edition, Duxbury Press,
1994.

